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Time Domain Analysis of SAW Reflectors
ROGER D. FILDES AND BILL J. HUNSINGER

Abstract—A time domain analysis of higfr-refketivity SAW refleetor
arrays is shown to yield values of stripe reflectivity, center frequency, and

effeetive refleetiors plane penetration. An examination of the approach

shows that the results are insensitive to device losses, RF eorrpfing, and

transducer response. Experimental results confii the vafidity of the

teehniqne.

1. INTRODUCTION

R EFLECTOR gratings have traditionally been

analyzed in terms of their frequency response using

a transmission-line model [ 1]–[3]. Accurate determination

of device parameters from a measured frequency response

is difficult, however. since device losses, direct transducer

response, and RF coupling provide broad-band distor-

tions. Transducer frequency responses, however, are usu-

ally transformed to the time domain for analysis. A com-

parison of theoretical and measured impulse responses

aids in the identification, analysis, and improvement of

surface wave transducer response.

This paper applies a similar time domain analysis to

reflector arrays. Such an approach is shown to give addi-

tional insight into device performance and to overcome

some of the difficulties in the measurement of device

parameters. The determination of center frequency and

the normalized reflector stripe impedance z is shown to be

simple and essentially independent of reflector losses, RF

coupling, and transducer responses. Location of the effec-

tive reflection plane LP for the lossless case may also be

determined.

II. IMPULSE I@PONSE DETERMINATION

A. Graphical Approach

Initially a Iossless array of reflector stripes with uniform

reflectivity and gap and stripe widths is assumed. It is

seen in Fig. 1(c) that the impulse response r(t) of such an

array is a series of pulses separated by 27, where r is the

width of a gap or stripe divided by the surface wave
velocity [4], Fig. 1(b) shows that the magnitude of a given

pulse is dependent upon the number of propagation paths

contributing to that pulse and upon the values of reflec-

tion and transmission coefficients of the edges encoun-

tered by each such path. The reflection and transmission

coefficients for a wave encountering a stripe are defined
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Fig. 1. Graphical impulse response analysis. (a) Uniform reflector

array. (b) Array reflection components. (c) Impulse response.

as R, = (z – 1)/(z + 1) and ~ = 2z/(z + 1), and the

coefficients for a wave encountering a gap as RO= (1 –

z)/(1 + z) and TO= 2/(1 + z). An expression for the pulse

at any given time may be written as a function of these

parameters. In practice, these expressions may be sim-

plified by using only two parameters, R and T, where

R= R[=– RO,and T=~.
A graphical illustration of the first three pulses from a

reflector array is shown in Fig. 1(b). The first pulse occurs

at time 27 and has a magnitude of R, while the second

pulse occurs at 4T and has a magnitude of – RT2. The
third pulse at time 67 is the sum of two components, RT4

and – R 3T2. In principle, this type of analysis may be

extended to longer times and to arrays of arbitrary length

and is used in determining the expressions given in Table

I. The expressions assume that the number of stripes in

the array N is sufficiently large that the impulse response

at a given time is equivalent to the semi-infinite array

response.

Fig. 2 qualitatively depicts the magnitudes of the first

four components of the pulses as a function of time. It is

seen that each component builds to a peak and then
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,11 IIIll‘ i’h * pulse response of an array is readily available, however,

and is more general in its scope. Transmission-line models

have been used extensively in describing the frequency

domain of reflectors and, in contrast to the equation

‘R7’OmpOnen”L+

analysis above, are easily adapted to include nonuniformi-

ties within the reflector array. For simplicity it is decided

to utilize such an established model to obtain the

frequency domain data and then to transform the data to
Fig. 2. Qualitative impulse responsecomponent magnitudes.

the time domain.

TABLE I

1

TIM. Pulse No Reflecflon Components
way (11 RT “- ~,

,--------------
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2T 1 +R
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decays, and that components with higher powers of R
peak at later times. Noting that successive components of

a pulse change sign, it becomes clear that nulls will exist

at the times when the sum of the positive components

cancels the sum of the negative components.

Each pulse expression is written as a function strictly of

R by substituting ~~ for T. The values of R which

will produce a null at a given time are found by determin-

ing the roots of the appropriate expression. For example,

a null occurring at time t =67 means that the third pulse

from the reflector array has a magnitude of zero (see Fig.

1(c)). The sum of the components of the third pulse

expression (see Table I) are set equal to zero, and R is
then calculated to be & ~ /2. With smaller. more realis-

tic values of R, nulls would not be expected to occur until

later times.

Both the graphical derivation of high-order pulse ex-

pressions and the solution for the roots of such expres-

sions become an unmanageable task, even with the aid of

a computer. Another procedure for determining the im-

B. Fourier Transform Approach

The transmission-line model of a reflector array is

illustrated in Fig. 3.1 Reflector stripes are considered t(o

have phase length $, attenuation a,,, and characteristic

impedance Z:, while free surface gaps are represented by

phase length 0, attenuation ag, and characteristic impeda-

nce ZO. The transmission matrix (T-matrix) of the array

is calculated by cascading the T-matrices of each succes-

sive gap-stripe section and is then converted to a scatter-

ing matrix. The reflection coefficient S1I represents the

reflectivity of the array so that the frequency response

r(u) is found by plotting S1, versus frequency. The im-

pulse response of the reflector array is obtained by Four-

ier transforming r(u).
The theoretical frequency response of a lossless 8CI0

stripe array with A/4 stripes and gaps and normalized

impedance z = Z~/ ZO= 0.99224 is shown in Fig. 4(a). It iS

quite similar to responses presented by Lakin, Haydl, and

Suzuki [2], [5], [6]. The envelope of the theoretical impulse

response of the reflector, obtained by transforming 17(u’),

is pictured in Fig. 4(b). For the theoretical frequency of

98.38 MHz, the primary reflections are time limited to a

little over 8 ps. The long time duration of the repetitive

lobes, therefore, indicates that multiple reflections with m

the array are indeed a significant phenomenon.

Near the center frequency of a high-reflectivity arra:y.

little energy reaches the end of the array so that its

response closely approximates that of an infinite array.

Significant energy of off-frequency signals penetrates to

tSecond-order mechamsms such as stored energy are not considered.
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Theoretical reflector array responses. (a) Frequency response.
(b) Impulse response.

the end of a typical reflector, however, causing its re-

sponse to such signals to be affected. The lack of multiple

reflections at the end of the array causes it to act as a

highly localized discontinuity. This effect results in the

occurrence of a sudden jump in an array’s reflectivity

impulse response as seen in Fig. 4(b) at time ~. The center

frequency of the array may thus be calculated from the

equation & = N/ $, where N is the total number of reflec-

tor stripes.

The multiple reflections within the array interact to

produce a series of impulse response nulls as predicted in

the graphical analysis section. For a given center
frequency, the location of the first null t. has a one-to-one

correspondence to IR 1. For small values of reflectivity,

Az = (1 – z) is approximately equal to 2R, so that IAz I may

be considered as a function of t. and jv This relationship

is plotted in Fig. 5. The type of substrate and reflector

stripes used determine the sign of Az, so that z may be

determined from the graph by locating the appropriate

(tfl&/ 1OO-MHZ) ratio on the x axis. This relationship is

independent of N, as long as N is large enough that the

first null occurs before time l.. This is true for high-reflec-

tivity reflector arrays where r(oO) = (z2~ – 1)/(z2~ + 1) >

0.957. The dashed lines represent the lower limit of IAzI

t
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Fig. 5. Characteristic impedance mismatch versus first nutl time.
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Fig. 6. Effects of stripe loss: z =0.960, Jo = 100 MHz, N= 75. (a) ag = O,
a, =0, Ir(oo)l =0.9956. (b) a, =0, a, =0.0027 Np/stnpe, [r(oo)[ =

0.9419. (c) ~ =0, a, =0.009 Np/stripe, ]r(oo)l =0.8362.
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which may be read from the graph for a given N, ensuring

that tn<$ Also, once z is determined, the location of the

effective reflection plane may be calculated as LP =
1/4]Azl wavelengths into the array, assuming there are no

propagation losses [7].

Uniform attenuation (ag = a,) in an array decreases the

magnitude of each pulse component at a given time by an

identical amount, so output nulls remain unaffected.

Assuming reasonably small changes in the attenuation

factor between successive output pulses, output maxima

will also remain the same. Thus the location of tnand $

are not affected by uniform loss. Fig. 6 shows the effect of

nonuniform attenuation (ag #a~), illustrating that such

loss has negligible effect on the position of ; or the

minimum tnfor any loss factor acceptable in a resonator

reflector. TIE curve of Fig. 5 is thus independent of such

losses so that the determination of z is valid in spite of the

presence of array attenuation. With an accurate knowl-

edge of z, the theoretical array reflectivity at center

frequency, I’(uO) = (zz~ – 1)/(z2~ -i- 1) may be calculated

and compared to measured reflectivity for a determina-

tion of attenuation losses.

Another approach to the determination of z without the

use of a graph is given in the Appendix,

III. EXPERIMENTAL RESULTS

A test device constructed to verify the principles of

practicality of the above approach of analysis is shown

schematically in Fig. 7. The reflector array consists of 800

shorted Al stripes on ST-Quart~, and both transducers

and reflector stripes are -4000-A thick. The transducers

are designed with A/8 fingers to minimize the effect of

reflections from their edges. The measured frequency re-

sponse is pictured in Fig. 8(a). The reflector response is

masked by RF coupling, introducing uncertainty into the

analysis of the original frequency data. The impulse re-

sponse envelope obtained by Fourier transforming the

frequency data is shown in Fig. 8(b). The time domain

plot looks much like expected, noting that the effect of

RF coupling is separated from the reflector response, in

contrast to the original frequency data. Direct transducer

response on this device was suppressed with the use of a

unidirectional transducer as the output transducer [8]. If a

unidirectional output transducer is not used, the direct

transducer response is localized in the time domain and

does not affect tn or ~. The output transducer should,

however, be located far enough from the array so that the

direct transducer response does not appreciably affect the

apparent value of t,,which is taken as the zero time

reference. Since N= 800 and z <1 (Al fingers on quartz),
the center frequency is calculated to be 98.52 MHz and

z =0.9922, indicating that the previous theoretical model

with parameters f.= 98.38 MHz and z =0.992 24 should

give a close fit of measured data. Fig. 8(c) shows the

superposition of the theoretical and measured impulse

responses.
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Fig. 8. Experimental test device responses.(a)
response. (b) Experimental imputse response.
experimental and theoretical impulse responses.
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IV. SUMMARY

An approach to the time domain analysis of high-reflec-

tivity uniform SAW reflector arrays has been presented.

Accurate determination of center frequency and normal-
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ized reflector stripe impedance has been shown to be

straightforward and insensitive to losses, RF coupling,

and transducer coupling.

The procedure for calculating these parameters is as

follows:

1)

2)
3)
4)
5)

6)

measure the frequency response of the device I’(o);

transform r(u) to obtain the impulse response r(t);

note the values of tnand ~ (as referred to t,);

center frequency is equal to N/~;

Az = (z – 1) may be read from graph in Fig. 5, or z

may be approximated from the equation

[

~ln(3+2ti)
z >1 mexp

(0.918)Nt~
1

(see Appendix)
<1

for a.= a,sO, effective reflection plane penetration

is given by LP = 1/41z – 1I wavelengths.

Initial results also indicate that the analysis is readily

extendable to withdrawal weighted reflector arrays. Fu-

ture work may produce similar procedures for determina-

tion of other parameters such as stored energy and device

losses.

V. APPENDIX

While a tabulated graph such as that in Fig. 5 is quite

easy to use, z may be closely approximated by a direct

calculation when a graph is not available. Returning to

the equation analysis of Section II, it is recalled that

IR I = ~ /2 is the solution for the case of a null occurring

at t=67. Of this total time of 67, 27 is simply the net

delay time between the reference plane and the front edge

of the reflector array. The actual time duration of reflec-

tions within the array which are involved in producing the

null is thus 47. Since IR I= ~ /2, each edge reflects

one-half of any incident power so that ~ is the separation

time of successive “half-power reflectors.” The 4~ interac-

tia time of the array is noted to be four times this

separation time. If this observation is extendable to arrays

with smaller values of IR I, the first anticipated null of an

array would be at t= (4t~ +27), where th is the time length

of a section of stripes with a net reflection magnitude of

0.707 or one-half power.

For z =0.992 24, 113 reflector stripes have a net reflec-

tivity of – 0.707 or one-half power. With r= 1/4f0 = 2.54
ns, the corresponding time separation between successive

half-power reflector sections is then 0.574 ps. By the

above correlation the expected time of the first null is then

4(0.574) +2(0.0025) =2.30 ps. In Fig. 4 the calculated null

t. is seen to be -2.45 ps which is close but not exactly

equal to the anticipated value. That some extra time is

required is to be expected. Examination of the earlier

example for R = ~ 0.707 (discrete half-power reflectors)

shows that interactions between three edges was required

to produce the null. In the distributed case an impulse

signal needs to penetrate slightly into the third half-power

section before interactions in the array correspond to the

interactions between three half-power edges. This extra

time will be constant for a given tn,however, so that the

calculated or measured tnneed only be corrected by a

determinable factor y in order to use the simple concept

as proposed.

NO= yt.N/2$ is the number of reflectors which have a
net reflection magnitude of ~ /2, so that z may be

calculated from the equation

‘::=exp[ln(3:~:)
It has been empirically determined that it is sufficient to

remember a value of about 0.918 for y in most practical

experimental work, resulting in the equation
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